Journal of Big Data (Dec 2021)

Air-pollution prediction in smart city, deep learning approach

  • Abdellatif Bekkar,
  • Badr Hssina,
  • Samira Douzi,
  • Khadija Douzi

DOI
https://doi.org/10.1186/s40537-021-00548-1
Journal volume & issue
Vol. 8, no. 1
pp. 1 – 21

Abstract

Read online

Abstract Over the past few decades, due to human activities, industrialization, and urbanization, air pollution has become a life-threatening factor in many countries around the world. Among air pollutants, Particulate Matter with a diameter of less than $$2.5 \mu m$$ 2.5 μ m ( $$PM_{2.5}$$ P M 2.5 ) is a serious health problem. It causes various illnesses such as respiratory tract and cardiovascular diseases. Hence, it is necessary to accurately predict the $$PM_{2.5}$$ P M 2.5 concentrations in order to prevent the citizens from the dangerous impact of air pollution beforehand. The variation of $$PM_{2.5}$$ P M 2.5 depends on a variety of factors, such as meteorology and the concentration of other pollutants in urban areas. In this paper, we implemented a deep learning solution to predict the hourly forecast of $$PM_{2.5}$$ P M 2.5 concentration in Beijing, China, based on CNN-LSTM, with a spatial-temporal feature by combining historical data of pollutants, meteorological data, and $$PM_{2.5}$$ P M 2.5 concentration in the adjacent stations. We examined the difference in performances among Deep learning algorithms such as LSTM, Bi-LSTM, GRU, Bi-GRU, CNN, and a hybrid CNN-LSTM model. Experimental results indicate that our method “hybrid CNN-LSTM multivariate” enables more accurate predictions than all the listed traditional models and performs better in predictive performance.

Keywords