AIP Advances (Jan 2016)

Simultaneous achievement of high dielectric constant and low temperature dependence of capacitance in (111)-oriented BaTiO3-Bi(Mg0.5Ti0.5)O3-BiFeO3 solid solution thin films

  • Junichi Kimura,
  • Mohamed-Tahar Chentir,
  • Takao Shimizu,
  • Hiroshi Uchida,
  • Hiroshi Funakubo

DOI
https://doi.org/10.1063/1.4939818
Journal volume & issue
Vol. 6, no. 1
pp. 015304 – 015304-7

Abstract

Read online

The temperature dependence of the capacitance of (111)c-oriented (0.90–x)BaTiO3-0.10Bi(Mg0.5Ti0.5)O3-xBiFeO3 solid solution films is investigated. These films are prepared on (111)cSrRuO3/(111)Pt/TiO2/SiO2/(100)Si substrates by the chemical solution deposition technique. All the films have perovskite structures and the crystal symmetry at room temperature varies with increasing x ratio, from pseudocubic when x = 0–0.30 to rhombohedral when x = 0.50–0.90. The pseudocubic phase shows a high relative dielectric constant (εr) (ranging between 400 and 560 at room temperature and an operating frequency of 100 kHz) and a low temperature dependence of capacitance up to 400°C, while maintaining a dielectric loss (tan δ) value of less than 0.2 at 100 kHz. In contrast, εr for the rhombohedral phase increases monotonically with increasing temperature up to 250°C, and increasingly high tan δ values are recorded at higher temperatures. These results indicate that pseudocubic (0.90–x)BaTiO3-0.10Bi(Mg0.5Ti0.5)O3-xBiFeO3 solid solution films with (111) orientation are suitable candidates for high-temperature capacitor applications.