Classification of the Pathological Range of Motion in Low Back Pain Using Wearable Sensors and Machine Learning
Fernando Villalba-Meneses,
Cesar Guevara,
Alejandro B. Lojan,
Mario G. Gualsaqui,
Isaac Arias-Serrano,
Paolo A. Velásquez-López,
Diego Almeida-Galárraga,
Andrés Tirado-Espín,
Javier Marín,
José J. Marín
Affiliations
Fernando Villalba-Meneses
IDERGO (Research and Development in Ergonomics), I3A (Instituto de Investigación en Ingeniería de Aragón), University of Zaragoza, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain
Cesar Guevara
Centro de Investigación en Mecatrónica y Sistemas Interactivos—MIST, Universidad Tecnológica Indoamérica, Quito 170103, Ecuador
Alejandro B. Lojan
School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
Mario G. Gualsaqui
School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
Isaac Arias-Serrano
School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
Paolo A. Velásquez-López
School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
Diego Almeida-Galárraga
School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
Andrés Tirado-Espín
School of Mathematical and Computational Sciences, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
Javier Marín
IDERGO (Research and Development in Ergonomics), I3A (Instituto de Investigación en Ingeniería de Aragón), University of Zaragoza, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain
José J. Marín
IDERGO (Research and Development in Ergonomics), I3A (Instituto de Investigación en Ingeniería de Aragón), University of Zaragoza, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain
Low back pain (LBP) is a highly common musculoskeletal condition and the leading cause of work absenteeism. This project aims to develop a medical test to help healthcare professionals decide on and assign physical treatment for patients with nonspecific LBP. The design uses machine learning (ML) models based on the classification of motion capture (MoCap) data obtained from the range of motion (ROM) exercises among healthy and clinically diagnosed patients with LBP from Imbabura–Ecuador. The following seven ML algorithms were tested for evaluation and comparison: logistic regression, decision tree, random forest, support vector machine (SVM), k-nearest neighbor (KNN), multilayer perceptron (MLP), and gradient boosting algorithms. All ML techniques obtained an accuracy above 80%, and three models (SVM, random forest, and MLP) obtained an accuracy of >90%. SVM was found to be the best-performing algorithm. This article aims to improve the applicability of inertial MoCap in healthcare by making use of precise spatiotemporal measurements with a data-driven treatment approach to improve the quality of life of people with chronic LBP.