Scientific Reports (Aug 2024)

An experimental and theoretical study on the creep behavior of silt soil in the Yellow River flood area of Zhengzhou City

  • Zhanfei Gu,
  • Hailong Wei,
  • Zhikui Liu

DOI
https://doi.org/10.1038/s41598-024-70947-w
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 15

Abstract

Read online

Abstract We took the silt soil in the Yellow River flood area of Zhengzhou City as the research object and carried out triaxial shear and triaxial creep tests on silt soil with different moisture contents (8%, 10%, 12%, 14%) to analyze the effect of moisture content on silt soil. In addition, the influence of moisture contents on soil creep characteristics and long-term strength was analyzed. Based on the fractional derivative theory, we established a fractional derivative model that can effectively describe the creep characteristics of silt soil in all stages, and used the Levenberg–Marquardt algorithm to inversely identify the relevant parameters of the fractional derivative creep model. The results show that the shear strengths of silt soil samples with moisture contents of 8%, 10%, 12% and 14% are 294 kPa, 236 kPa, 179 kPa and 161 kPa, respectively. The shear strength of silt soil decreases with increasing moisture content. When the moisture content increases, the cohesion of the silt soil decreases. Under the same deviatoric stress, the higher the moisture content of the silt soil, the greater the deformation will be. The long-term strength of silt soil decreases exponentially with the increase of moisture content. If the moisture content is 12%, the long-term strength loss rate of silt soil is the smallest, with a value of 32.96%. The calculated values of our creep model based on fractional derivatives have a high goodness of fit with the experimental results. This indicates that our model can better simulate the creep characteristics of silt soil. This study can provide a theoretical basis for engineering construction and geological disaster prevention in silt soil areas in the Yellow River flood area.

Keywords