Physical Review X (Mar 2025)
Damaging Intermolecular Relaxation Processes Initiated by Heavy-Ion Irradiation of Hydrated Biomolecules
Abstract
Intermolecular Coulombic decay (ICD) is considered a general phenomenon that plays a key role in many fundamental and applied fields related to biological environments. In many cases, however, the mechanisms and efficiency of ICD have yet to be uncovered. A prominent example is heavy-ion cancer therapy. Here, we report the first detection of a damaging intermolecular relaxation cascade initiated by heavy-ion bombardment of hydrated pyrimidine clusters. The process can significantly contribute to the high biological effectiveness of heavy-ion irradiation and thus might play an essential role in many radiotherapy techniques. Inner-valence ionization of the cluster initiates ICD and triggers proton transfer between water molecules, producing destructive low-energy electrons, HO^{•} radicals, and hydrated protons. Notably, the efficiency of ICD was found to increase dramatically with the number of water molecules, making ICD the dominant decay mechanism after inner-valence ionization. These findings indicate that the biological damage, caused by ICD in aqueous environments, is much more severe than was previously recognized.