Journal of Lipid Research (Jul 1988)

Regional specificities of monoclonal anti-human apolipoprotein B antibodies

  • E S Krul,
  • Y Kleinman,
  • M Kinoshita,
  • B Pfleger,
  • K Oida,
  • A Law,
  • J Scott,
  • R Pease,
  • G Schonfeld

Journal volume & issue
Vol. 29, no. 7
pp. 937 – 947

Abstract

Read online

The usefulness of monoclonal antibodies as probes of protein structure is directly related to knowledge of the structures and locations of the epitopes with which they interact. In this report we provide a detailed map of 13 epitopes on apoB-100 defined by our anti-apoB monoclonal antibodies based on current information on the amino acid sequence of apoB-100. To localize antibody specificities to smaller regions along the linear sequence of the apoB-100 molecule we used a) thrombin- and kallikrein-generated fragments of apoB-100; b) beta-galactosidase- apoB fusion proteins; c) heparin; and d) antibody versus antibody competition experiments. Most of the monoclonal antibodies elicited by immunization with LDL were directed towards epitopes within the first 1279 amino terminal (T4/K2 fragments) or last 1292 carboxyl terminal amino acid residues (T2/K4 fragments) of apoB-100. One epitope localized to the mid-portion of apoB-100 was elicited by immunization with VLDL (D7.2). Saturating amounts of heparin bound to LDL did not inhibit the binding of any of the monoclonal antibodies to their respective epitopes on apoB-100, indicating that none of the antibody determinants is situated close to any of the reported heparin binding sites on LDL apoB. We examined the expression of apoB epitopes on VLDL subfractions and LDL isolated from a normolipidemic donor. The apparent affinities with which the antibodies interacted with their respective epitopes on the VLDL subfractions and LDL uniformly increased as follows: LDL greater than VLDL3 greater than VLDL2 greater than VLDL1, suggesting that each of the major regions of apoB-100 is progressively more exposed as normal VLDL particles become smaller in size and epitopes are most exposed in LDL. Previous experiments utilizing hypertriglyceridemic VLDL subfractions yielded similar results, but the rank order of VLDL subfractions and LDL was not the same for all antibodies tested. Thus, differences in apoB epitope expression on VLDL particles of differing sizes is a general phenomenon, but the expression of apoB epitopes in hypertriglyceridemic VLDL appears to be more heterogeneous than is the case for VLDL from normolipidemic donors.(ABSTRACT TRUNCATED AT 400 WORDS)