Buildings (Nov 2023)
Upper Bound Analysis of Ultimate Pullout Capacity for a Single Pile Using Hoek–Brown Failure Criterion
Abstract
As a typical pullout foundation, the uplift pile has been widely used in ocean projects or geotechnical engineering, but the accurate prediction of its ultimate pullout capacity has always been a difficulty in engineering design. This study focused on a single pile in rock formation, and constructed a curved uplift failure mechanism in the case that the whole rock mass around the pile was damaged. In this mechanism, the rock mass failure was assumed to comply with the Hoek–Brown failure criterion. Then, the theoretical prediction formulas for the rock failure surface and the ultimate pullout capacity of the pile were derived by using the upper bound theorem. The influence laws of factors such as different rock mass parameters, pile parameters and additional surface load on the pile capacity and failure range were analyzed. Further, the proposed method was validated by comparing with the numerical simulation results. The results show that the ultimate pullout capacity of the pile increases with the increase in the length/diameter ratio, rock empirical parameter A, tensile strength, compressive strength, unit weight and additional surface load, but decreases with the increase in rock empirical parameter B. Empirical parameters A and B are key factors affecting the pile capacity and rock failure range, and should be attached importance to in engineering design. The research work in this study can provide some theoretical reference for the design of the uplift pile in rock formation.
Keywords