Plants (Aug 2023)

Genetic Diversity and Population Structure of <i>Juniperus seravschanica</i> Kom. Collected in Central Asia

  • Moldir Yermagambetova,
  • Shyryn Almerekova,
  • Orzimat Turginov,
  • Ormon Sultangaziev,
  • Saule Abugalieva,
  • Yerlan Turuspekov

DOI
https://doi.org/10.3390/plants12162961
Journal volume & issue
Vol. 12, no. 16
p. 2961

Abstract

Read online

Juniperus seravschanica Kom. is a species that grows widely in the mountain ranges from Central Asia to Oman. It is an important tree for the formation of shrub–forest massifs in mountainous areas and for draining and fixing soils from middle to high altitudes. A comprehensive study of the species’ genetic diversity and population structure is a basic approach to understanding the current status of J. seravschanica resources for the development of future conservation strategies. Samples from 15 populations of J. seravschanica were collected from the mountain ranges of Uzbekistan, Kyrgyzstan, and Kazakhstan. The genetic diversity and population structure of 15 Central Asian populations of J. seravschanica were assessed using 11 polymorphic simple sequence repeat (SSR) markers. Genetic diversity parameters, including the number of alleles (na), the effective number of alleles (ne), Shannon’s information index (I), the percentage of polymorphic loci (PPL), Nei’s genetic diversity index (Nei), principal coordinate analysis (PCoA), etc., were evaluated. The analysis of 15 J. seravschanica populations based on 11 polymorphic SSRs detected 35 alleles. The average PIC value was 0.432, and the highest value (0.662) was found in the JT_40 marker. Nei’s genetic diversity index for the J. seravschanica populations was 0.450, ranging from 0.407 (population 14) to 0.566 (population 4). The analysis of molecular variance (AMOVA) showed that 90.3% of total genetic variation is distributed within the population. Using the alleles of all the populations, the gene flow (Nm) was found to be 4.654. Population structure analysis revealed poor clustering in the studied populations and confirmed our AMOVA results. The output of this work can be efficiently used for the maintenance of the species across the Central Asian region.

Keywords