Applied Sciences (Dec 2021)
Efficient Detection of DDoS Attacks Using a Hybrid Deep Learning Model with Improved Feature Selection
Abstract
DDoS (Distributed Denial of Service) attacks have now become a serious risk to the integrity and confidentiality of computer networks and systems, which are essential assets in today’s world. Detecting DDoS attacks is a difficult task that must be accomplished before any mitigation strategies can be used. The identification of DDoS attacks has already been successfully implemented using machine learning/deep learning (ML/DL). However, due to an inherent limitation of ML/DL frameworks—so-called optimal feature selection—complete accomplishment is likewise out of reach. This is a case in which a machine learning/deep learning-based system does not produce promising results for identifying DDoS attacks. At the moment, existing research on forecasting DDoS attacks has yielded a variety of unexpected predictions utilising machine learning (ML) classifiers and conventional approaches for feature encoding. These previous efforts also made use of deep neural networks to extract features without having to maintain the track of the sequence information. The current work suggests predicting DDoS attacks using a hybrid deep learning (DL) model, namely a CNN with BiLSTM (bidirectional long/short-term memory), in order to effectively anticipate DDoS attacks using benchmark data. By ranking and choosing features that scored the highest in the provided data set, only the most pertinent features were picked. Experiment findings demonstrate that the proposed CNN-BI-LSTM attained an accuracy of up to 94.52 percent using the data set CIC-DDoS2019 during training, testing, and validation.
Keywords