Applied Sciences (Nov 2023)
Influence of the Main Blown Film Extrusion Process Parameters on the Mechanical Properties of a High-Density Polyethylene Hexene Copolymer and Linear Low-Density Polyethylene Butene Copolymer Blend Used for Plastic Bags
Abstract
Polyethylene plastic bags manufactured via blown film extrusion have different quality specifications depending on their intended use. It is known that the mechanical properties of a film depend on the process parameters established, but little is known concerning how they affect one another, even more so due to the variety of polyethylene materials and processing techniques. This study focuses on establishing a proper correspondence of important mechanical properties like the dart impact, tensile strength at break, and elongation at break with commonly used process parameters like the blow-up ratio, take-up ratio, thickness reduction, and neck height, for a high-density polyethylene hexene copolymer and a linear low-density polyethylene butene copolymer blend film. Because this polyethylene mixture is an anisotropic material, interesting R2 values equal to or higher than 0.90 were found: a BUR with elongation at break and tensile strength at break in the MD and TD, a TUR with elongation at break in the MD and tensile strength at break in the MD and TD, and a TR with elongation at break and tensile strength at break in the MD. Also, a relationship between the dart impact and both the neck height and thickness were found.
Keywords