Applied Sciences (Dec 2017)
A Hardware-in-the-Loop Based Co-Simulation Platform of Cyber-Physical Power Systems for Wide Area Protection Applications
Abstract
With the development of smart grid technology, there has been an increasingly strong tendency towards the integration between the aspects of power and communication. The traditional power system has gradually transformed into the cyber-physical power system (CPPS), where co-simulation technologies can be utilized as an effective measure to describe the computation, communication, and integration processes of a power grid. In this paper, the construction methods and application scenarios of co-simulation platforms in the current research are first summarized. Then, a scheme of the real-time hardware-in-the-loop co-simulation platform is put forward. On the basis of power grid simulation developed with the Real-Time Laboratory (RT-LAB), and the communication network simulation developed with OPNET, the control center was developed with hardware devices to realize real-world control behavior instead of digital simulations. Therefore, the mixed-signal platform is capable of precisely simulating the dynamic features of CPPS with high speed. The distributed simulation components can be coordinated in a unified environment with high interoperability and reusability. Moreover, through a case study of a wide area load control system, the performance of the proposed platform under various conditions of control strategies, communication environments, and sampling frequencies was revealed and compared. As a result, the platform provided an intuitive and accurate way to reconstruct the CPPS environment where the influence of the information side of the CPPS control effects was verified.
Keywords