ABUAD Journal of Engineering Research and Development (Jul 2024)
Efficient Energy Management System using Honey Badger Algorithm for Smart Agriculture
Abstract
Today, optimization is crucial to solving energy crises, especially in smart homes. However, the optimization-based methods for energy management in smart agriculture available globally need further improvement, which motivates this study. To resolve the problem, an efficient scheduling farm energy management system is required. Therefore, this study proposes a Farm Energy Management System (FEMS) for smart agriculture by adopting a honey-badger optimization algorithm. In the proposed system, a multi-objective optimization problem is formulated to find the best solutions for achieving the set of objectives, such as electricity cost, load minimization and peak-to-average ratio minimization, while considering the farmers' comfort. The proposed system considers commercialized agriculture with the integration of Renewable Energy Resources (RES). Also, the proposed system minimizes both load consumption and electricity costs via the scheduling of farm appliances in response to Real-Time Pricing (RTP) and Time-of-Use (ToU) pricing schemes in the electricity market. Extensive experiments are carried out in MATLAB 2018A to determine the efficacy of the proposed system. The proposed FEMS consists of sixteen farm appliances with their respective power ratings, inclusive of RES. The simulation results showed that a system without FEMS has a high electricity cost of 50.69% as compared to 43.04% for FEMS without RES and 6.27% for FEMS with RES when considering the ToU market price. For RTP market price, a system without FEMS has an electricity cost of 42.30%, as compared to 30.64% for FEMS without RES and 27.24% for FEMS with RES. Besides, the maximum load consumption for a system without FEMS is 246.80 kW, as compared to 151.40 kW for FEMS without RES and 18.85 kW for FEMS with RES when considering the ToU market price. Also, for the RTP market price, the maximum load consumption for a system without FEMS is 246.80 kW, as compared to 186.40 kW for FEMS without RES and 90.68 kW for FEMS with RES. The significance of the study is to propose a conceptualized FEMS based on the honey badger optimization algorithm. The proposed system provides scheduling of farm appliances that alleviates the burden of the electricity grid and is cost-effective for large and small-scale farmers.
Keywords