Journal of Experimental & Clinical Cancer Research (Aug 2024)

The DNA repair pathway as a therapeutic target to synergize with trastuzumab deruxtecan in HER2-targeted antibody–drug conjugate–resistant HER2-overexpressing breast cancer

  • Jangsoon Lee,
  • Kumiko Kida,
  • Jiwon Koh,
  • Huey Liu,
  • Ganiraju C. Manyam,
  • Young Jin Gi,
  • Dileep R. Rampa,
  • Asha S. Multani,
  • Jing Wang,
  • Gitanjali Jayachandran,
  • Dae-Won Lee,
  • James M. Reuben,
  • Aysegul Sahin,
  • Lei Huo,
  • Debu Tripathy,
  • Seock-Ah Im,
  • Naoto T. Ueno

DOI
https://doi.org/10.1186/s13046-024-03143-3
Journal volume & issue
Vol. 43, no. 1
pp. 1 – 20

Abstract

Read online

Abstract Background Anti-HER2 therapies, including the HER2 antibody–drug conjugates (ADCs) trastuzumab emtansine (T-DM1) and trastuzumab deruxtecan (T-DXd), have led to improved survival outcomes in patients with HER2-overexpressing (HER2+) metastatic breast cancer. However, intrinsic or acquired resistance to anti-HER2–based therapies remains a clinical challenge in these patients, as there is no standard of care following disease progression. The purpose of this study was to elucidate the mechanisms of resistance to T-DM1 and T-DXd in HER2+ BC patients and preclinical models and identify targets whose inhibition enhances the antitumor activity of T-DXd in HER2-directed ADC-resistant HER2+ breast cancer in vitro and in vivo. Methods Targeted DNA and whole transcriptome sequencing were performed in breast cancer patient tissue samples to investigate genetic aberrations that arose after anti-HER2 therapy. We generated T-DM1 and T-DXd–resistant HER2+ breast cancer cell lines. To elucidate their resistance mechanisms and to identify potential synergistic kinase targets for enhancing the efficacy of T-DXd, we used fluorescence in situ hybridization, droplet digital PCR, Western blotting, whole-genome sequencing, cDNA microarray, and synthetic lethal kinome RNA interference screening. In addition, cell viability, colony formation, and xenograft assays were used to determine the synergistic antitumor effect of T-DXd combinations. Results We found reduced HER2 expression in patients and amplified DNA repair–related genes in patients after anti-HER2 therapy. Reduced ERBB2 gene amplification in HER2-directed ADC–resistant HER2+ breast cancer cell lines was through DNA damage and epigenetic mechanisms. In HER2-directed ADC–resistant HER2+ breast cancer cell lines, our non-biased RNA interference screening identified the DNA repair pathway as a potential target within the canonical pathways to enhance the efficacy of T-DXd. We validated that the combination of T-DXd with ataxia telangiectasia and Rad3-related inhibitor, elimusertib, led to significant breast cancer cell death in vitro (P < 0.01) and in vivo (P < 0.01) compared to single agents. Conclusions The DNA repair pathways contribute to HER2-directed ADC resistance. Our data justify exploring the combination treatment of T-DXd with DNA repair–targeting drugs to treat HER2-directed ADC–resistant HER2+ breast cancer in clinical trials.

Keywords