Energy Reports (Nov 2023)
Two-stage scheduling of smart electric vehicle charging stations and inverter-based Volt-VAR control using a prediction error-integrated deep reinforcement learning method
Abstract
Smart electric vehicle charging stations (EVCSs) having distributed energy resources (DERs), including photovoltaic (PV) systems and energy storage systems (ESSs), are becoming vital devices for increasing their profit and maintaining stable distribution grid operations by scheduling the real/reactive power of DERs. However, prediction errors of PV generation outputs and electric vehicle (EV) loads from EVCSs may decrease their profit and destabilize the distribution grid owing to incorrect EV charging scheduling and voltage regulation. To address this issue, we propose a two-stage framework for smart EVCS scheduling and inverter-based Volt-VAR control (VVC) using prediction error-integrated deep reinforcement learning (DRL). In the first stage, the EVCS agents train their neural network model with a 30-min resolution to maximize their profit through a day-ahead charging/discharging scheduling of ESSs in the EVCSs while responding to various prediction errors of PV generation outputs and EV loads. The total real power consumption of each EVCS, including the charging/discharging schedules of the ESSs calculated in the first stage, is delivered to the second stage, in which the VVC agent trains its neural network model with a 5-min resolution to minimize the real power loss and voltage violations through real-time reactive power scheduling of the ESSs in the EVCSs via their inverters. The proposed approach was tested in the IEEE 33-node and IEEE 123-node distribution systems. The results show that the proposed approach outperforms DRL methods that do not consider the prediction errors in terms of profitability of the EVCS and reduction of real power loss.