PLoS ONE (Jan 2017)
Automated acoustic detection of mouse scratching.
Abstract
Itch is an aversive somatic sense that elicits the desire to scratch. In animal models of itch, scratching behavior is frequently used as a proxy for itch, and this behavior is typically assessed through visual quantification. However, manual scoring of videos has numerous limitations, underscoring the need for an automated approach. Here, we propose a novel automated method for acoustic detection of mouse scratching. Using this approach, we show that chloroquine-induced scratching behavior in C57BL/6 mice can be quantified with reasonable accuracy (85% sensitivity, 75% positive predictive value). This report is the first method to apply supervised learning techniques to automate acoustic scratch detection.