Italian Journal of Pediatrics (Jul 2009)
Exhaled nitric oxide measurements in the first 2 years of life: methodological issues, clinical and epidemiological applications
Abstract
Abstract Fractional exhaled nitric oxide (FeNO) is a useful tool to diagnose and monitor eosinophilic bronchial inflammation in asthmatic children and adults. In children younger than 2 years of age FeNO has been successfully measured both with the tidal breathing and with the single breath techniques. However, there are a number of methodological issues that need to be addressed in order to increase the reproducibility of the FeNO measurements within and between infants. Indeed, a standardized method to measure FeNO in the first 2 years of life would be extremely useful in order to meaningfully interpret FeNO values in this age group. Several factors related to the measurement conditions have been found to influence FeNO, such as expiratory flow, ambient NO and nasal contamination. Furthermore, the exposure to pre- and postnatal risk factors for respiratory morbidity has been shown to influence FeNO values. Therefore, these factors should always be assessed and their association with FeNO values in the specific study population should be evaluated and, eventually, controlled for. There is evidence consistently suggesting that FeNO is increased in infants with family history of atopy/atopic diseases and in infants with recurrent wheezing. These findings could support the hypothesis that eosinophilic bronchial inflammation is present at an early stage in those infants at increased risk of developing persistent respiratory symptoms and asthma. Furthermore, it has been shown that FeNO measurements could represent a useful tool to assess bronchial inflammation in other airways diseases, such as primary ciliary dyskinesia, bronchopulmonary dysplasia and cystic fibrosis. Further studies are needed in order to improve the reproducibility of the measurements, and large prospective studies are warranted in order to evaluate whether FeNO values measured in the first years of life can predict the future development of asthma or other respiratory diseases.