Frontiers in Environmental Science (Sep 2021)

Responses of Soil Microbial Community and Enzyme Activities to Shrub Species Artemisia gmelinii in Relation to Varying Rainfall in a Semiarid Land, SW China

  • Laiye Qu,
  • Laiye Qu,
  • Bingbing Wang,
  • Xinyu Zhang,
  • Minggang Wang

DOI
https://doi.org/10.3389/fenvs.2021.725960
Journal volume & issue
Vol. 9

Abstract

Read online

Widely distributed shrubs in drylands can locally alter soil physicochemical properties, which distinguish soil under plant canopy from soil outside the canopy. In the present study, we used a dominant shrub species Artemisia gmelinii in a semiarid land, SW China, to investigate the consequences of “shrub resource islands” for soil microbial communities and enzymatic activities. Such investigation was made at four sites that differed in rates of rainfall to examine how the consequences were altered by variation in the local climate. The results showed that A. gmelinii enhanced fungal abundance but did not influence bacterial abundance, resulting in higher total microbial abundance and fungal-to-bacterial ratio in under-canopy soil compared to outside-canopy soil. Microbial community composition also differed between the two soils, but this difference only occurred at sites of low rainfall. Redundancy analysis revealed that such composition was attributed to variation in soil water content, bulk density, and total phosphorus as a result of shrub canopy and varying rates of rainfall. Activities of hydrolytic enzymes (β-1,4-glucosidase, β-1,4-N-acetylglucosaminidase, alkaline phosphatase, and leucine aminopeptidase) were higher in under-canopy soil than in outside-canopy soil, among which C-acquisition enzyme, β-1,4-glucosidase, and P-acquisition enzyme, alkaline phosphatase, were also higher in the soil of high rainfall. The overall pattern of enzyme activities did not show differences between under- and outside-canopy soils, but it separated the sites of high rate from that of low rates of rainfall. This pattern was primarily driven by variation in soil physicochemical properties rather than variation in soil microbial community, suggesting that the distribution pattern of enzyme activities may be more sensitive to variation in rainfall than to shrub canopy. In conclusion, our study shows that shrub species A. gmelinii can shift the soil microbial community to be fungal-dominant and increase hydrolytic enzyme activities, and such effect may depend on local climatic variation, for example, rainfall changes in the semiarid land. The findings of this study highlight the important roles of shrub vegetation in soil biological functions and the sensitivity of such roles to climatic variation in semiarid ecosystems.

Keywords