Progress on quantum dot photocatalysts for biomass valorization
Weijing Cao,
Wenjun Zhang,
Lin Dong,
Zhuang Ma,
Jingsan Xu,
Xiaoli Gu,
Zupeng Chen
Affiliations
Weijing Cao
Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Chemical EngineeringNanjing Forestry UniversityNanjingChina
Wenjun Zhang
Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Chemical EngineeringNanjing Forestry UniversityNanjingChina
Lin Dong
Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Chemical EngineeringNanjing Forestry UniversityNanjingChina
Zhuang Ma
Leibniz‐Institut für Katalyse e.V.RostockGermany
Jingsan Xu
School of Chemistry and Physics and Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueenslandAustralia
Xiaoli Gu
Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Chemical EngineeringNanjing Forestry UniversityNanjingChina
Zupeng Chen
Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Chemical EngineeringNanjing Forestry UniversityNanjingChina
Abstract Biomass with abundant reproducible carbon resource holds great promise as an intriguing substitute for fossil fuels in the manufacture of high‐value‐added chemicals and fuels. Photocatalytic biomass valorization using inexhaustible solar energy enables to accurately break desired chemical bonds or selectively functionalize particular groups, thus emerging as an extremely creative and low carbon cost strategy for relieving the dilemma of the global energy. Quantum dots (QDs) are an outstandingly dynamic class of semiconductor photocatalysts because of their unique properties, which have achieved significant successes in various photocatalytic applications including biomass valorization. In this review, the current development rational design for QDs photocatalytic biomass valorization effectively is highlighted, focusing on the principles of tuning their particle size, structure, and surface properties, with special emphasis on the effect of the ligands for selectively broken chemical bonds (C─O, C─C) of biomass. Finally, the present issues and possibilities within that exciting field are described.