Molecules (May 2023)

Development and Characterization of Novel Selective, Non-Basic Dopamine D<sub>2</sub> Receptor Antagonists for the Treatment of Schizophrenia

  • Piotr Stępnicki,
  • Sylwia Wośko,
  • Agata Bartyzel,
  • Agata Zięba,
  • Damian Bartuzi,
  • Klaudia Szałaj,
  • Tomasz M. Wróbel,
  • Emilia Fornal,
  • Jens Carlsson,
  • Ewa Kędzierska,
  • Ewa Poleszak,
  • Marián Castro,
  • Agnieszka A. Kaczor

DOI
https://doi.org/10.3390/molecules28104211
Journal volume & issue
Vol. 28, no. 10
p. 4211

Abstract

Read online

The dopamine D2 receptor, which belongs to the family of G protein-coupled receptors (GPCR), is an important and well-validated drug target in the field of medicinal chemistry due to its wide distribution, particularly in the central nervous system, and involvement in the pathomechanism of many disorders thereof. Schizophrenia is one of the most frequent diseases associated with disorders in dopaminergic neurotransmission, and in which the D2 receptor is the main target for the drugs used. In this work, we aimed at discovering new selective D2 receptor antagonists with potential antipsychotic activity. Twenty-three compounds were synthesized, based on the scaffold represented by the D2AAK2 compound, which was discovered by our group. This compound is an interesting example of a D2 receptor ligand because of its non-classical binding to this target. Radioligand binding assays and SAR analysis indicated structural modifications of D2AAK2 that are possible to maintain its activity. These findings were further rationalized using molecular modeling. Three active derivatives were identified as D2 receptor antagonists in cAMP signaling assays, and the selected most active compound 17 was subjected to X-ray studies to investigate its stable conformation in the solid state. Finally, effects of 17 assessed in animal models confirmed its antipsychotic activity in vivo.

Keywords