Heritage Science (Nov 2017)

Barium, zinc and strontium yellows in late 19th–early 20th century oil paintings

  • Vanessa Otero,
  • Marta F. Campos,
  • Joana V. Pinto,
  • Márcia Vilarigues,
  • Leslie Carlyle,
  • Maria João Melo

DOI
https://doi.org/10.1186/s40494-017-0160-3
Journal volume & issue
Vol. 5, no. 1
pp. 1 – 13

Abstract

Read online

Abstract This work focuses on the study of the 19th century yellow chromate pigments based on barium (BaCrO4), zinc (4ZnCrO4·K2O·3H2O) and strontium (SrCrO4). These pigments, which are reported to shift in hue and darken, have been found in 19th century artworks. A better understanding of their historic manufacture will contribute to the visual/chemical interpretation of change in these colours. Research was carried out on the Winsor & Newton (W&N) 19th century archive database providing a unique insight into their manufacturing processes. One hundred and three production records were found, 69% for barium, 25% for zinc and 6% for strontium chromates, mainly under the names Lemon, Citron and Strontian Yellow, respectively. Analysis of the records shows that each pigment is characterised by only one synthetic pathway. The low number of records found for the production of strontium chromate suggests W&N was not selling this pigment formulation on a large scale. Furthermore, contrary to what the authors have discovered for W&N chrome yellow pigments, extenders were not added to these pigment formulations, most probably due to their lower tinting strength (TS). The latter was calculated in comparison to pure chrome yellow (PbCrO4, 100% TS) resulting in 92% for barium, 65% for zinc potassium and 78% for strontium chromate pigments. This indicates that W&N was probably using extenders primarily to adjust pigment properties and not necessarily as a means to reduce their costs. Pigment reconstructions following the main methods of synthesis were characterised by complementary analytical techniques: Fibre optic reflectance spectroscopy, X-ray diffraction, micro-Raman and micro-Fourier transform infrared spectroscopies. These pigments can be clearly distinguished on the basis of their infrared CrO4 2− asymmetric stretching fingerprint profile (between 1000 and 700 cm−1) and of their Raman CrO4 2− stretching bands (850–950 cm−1). This enabled their identification in historic paint samples: a tube of late 19th century W&N Lemon Yellow oil paint and micro-samples from paintings by three Portuguese painters, António Silva Porto (1850–1893), João Marques de Oliveira (1853–1927) and Amadeo de Souza-Cardoso (1887–1918). The good correlation found between the reconstructions and historic samples validates their use as reference materials for future photochemical studies.

Keywords