Communications Physics (Apr 2023)

Phonon transmission through a nonlocal metamaterial slab

  • Yi Chen,
  • Ke Wang,
  • Muamer Kadic,
  • Sebastien Guenneau,
  • Changguo Wang,
  • Martin Wegener

DOI
https://doi.org/10.1038/s42005-023-01184-2
Journal volume & issue
Vol. 6, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Previous theory and experiment has shown that introducing strong (nonlocal) beyond-nearest-neighbor interactions in addition to (local) nearest-neighbor interactions into rationally designed periodic lattices called metamaterials can lead to unusual wave dispersion relations of the lowest band. For roton-like dispersions, this especially includes the possibility of multiple solutions for the wavenumber at a given frequency. Here, we study the one-dimensional frequency-dependent acoustical phonon transmission of a slab of such nonlocal metamaterial in a local surrounding. In addition to the usual Fabry-Perot resonances, we find a series of bound states in the continuum. In their vicinity, sharp Fano-type transmission resonances occur, with sharp zero-transmission minima next to sharp transmission maxima. Our theoretical discussion starts with a discrete mass-and-spring model. We compare these results with solutions of a generalized wave equation for heterogeneous nonlocal effective media. We validate our findings by numerical calculations on three-dimensional metamaterial microstructures for one-dimensional acoustical wave propagation.