Molecules (Jul 2018)

Molecular Modeling for Structural Insights Concerning the Activation Mechanisms of F1174L and R1275Q Mutations on Anaplastic Lymphoma Kinase

  • Cheng-Han Jiang,
  • Chong-Xian Huang,
  • Ya-Jyun Chen,
  • Yu-Chung Chuang,
  • Bo-Yen Huang,
  • Chia-Ning Yang

DOI
https://doi.org/10.3390/molecules23071610
Journal volume & issue
Vol. 23, no. 7
p. 1610

Abstract

Read online

Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase involved in various cancers. In its basal state, the structure of ALK is in an autoinhibitory form stabilized by its A-loop, which runs from the N-lobe to the C-lobe of the kinase. Specifically, the A-loop adopts an inhibitory pose with its proximal A-loop helix (αAL-helix) to anchor the αC-helix orientation in an inactive form in the N-lobe; the distal portion of the A-loop is packed against the C-lobe to block the peptide substrate from binding. Upon phosphorylation of the first A-loop tyrosine (Y1278), the αAL-helix unfolds; the distal A-loop detaches from the C-lobe and reveals the P+1 pocket that accommodates the residues immediately after their phosphorylation, and ALK is activated accordingly. Recently, two neuroblastoma mutants, F1174L and R1275Q, have been determined to cause ALK activation without phosphorylation on Y1278. Notably, F1174 is located on the C-terminus of the αC-helix and away from the A-loop, whereas R1275 sits on the αAL-helix. In this molecular modeling study, we investigated the structural impacts of F1174L and R1275Q that lead to the gain-of-function event. Wild-type ALK and ALK with phosphorylated Y1278 were also modeled for comparison. Our modeling suggests that the replacement of F1174 with a smaller residue, namely leucine, moves the αC-helix and αAL-helix into closer contact and further distorts the distal portion of the A-loop. In wild-type ALK, R1275 assumes the dual role of maintaining the αAL-helix–αC-helix interaction in an inactive form and securing αAL-helix conformation through the D1276–R1275 interaction. Accordingly, mutating R1275 to a glutamine reorients the αC-helix to an active form and deforms the entire A-loop. In both F1174L and R1275Q mutants, the A-loop rearranges itself to expose the P+1 pocket, and kinase activity resumes.

Keywords