Molecules (Feb 2017)

ZYZ-772 Prevents Cardiomyocyte Injury by Suppressing Nox4-Derived ROS Production and Apoptosis

  • Ying Wang,
  • Liangjie Zhong,
  • Xinhua Liu,
  • Yi Zhun Zhu

DOI
https://doi.org/10.3390/molecules22020331
Journal volume & issue
Vol. 22, no. 2
p. 331

Abstract

Read online

Nox-dependent signaling plays critical roles in the development of heart failure, cardiac hypertrophy, and myocardial infarction. NADPH oxidase 4 (Nox4) as a major source of oxidative stress in the heart offers a new therapeutic target in cardiovascular disease. In the present work, a novel flavonoid was isolated from Zanthoxylum bungeanum. Its structure was elucidated as Quercetin-3-O-(6′′-O-α-l-rhamnopyransoyl)-β-d-glucopyranoside-7-O-β-d-glucopyranoside (ZYZ-772) for the first time. ZYZ-772 exhibited significant cardio-protective property against CoCl2 induced H9c2 cardiomyocyte cells injury. In CoCl2 stimulated cardiomyocyte injury, ZYZ-772 inhibited expression of Nox4, and alleviated ROS overproduction. Importantly, ROS triggered MAPKs phosphorylation and P53 signaling mediated apoptosis were restored by ZYZ-772. Our findings present the first piece of evidence for the therapeutic properties of ZYZ-772 in preventing cardiomyocyte injury, which could be attributed to the suppression of Nox4/MAPKs/P53 axis. This will offer a novel therapeutic strategy for the treatment of cardiac ischemia disease.

Keywords