Plants (Apr 2025)

Impact of Land-Use Change on Vascular Epiphytes: A Review

  • Thorsten Krömer,
  • Helena J. R. Einzmann,
  • Glenda Mendieta-Leiva,
  • Gerhard Zotz

DOI
https://doi.org/10.3390/plants14081188
Journal volume & issue
Vol. 14, no. 8
p. 1188

Abstract

Read online

Human-caused habitat conversion, degradation, and climate change threaten global biodiversity, particularly in tropical forests where vascular epiphytes—non-parasitic plants growing on other plants—may be especially vulnerable. Epiphytes play vital ecological roles, in nutrient cycling and by providing habitat, but are disproportionately affected by land-use changes due to their reliance on host trees and specific microclimatic conditions. While tree species in secondary forests recover relatively quickly, epiphyte recolonization is slower, especially in humid montane regions, where species richness may decline by up to 96% compared to primary or old-growth forests. A review of nearly 300 pertinent studies has revealed a geographic bias toward the Neotropics, with limited research from tropical Asia, Africa, and temperate regions. The studies can be grouped into four main areas: 1. trade, use and conservation, 2. ecological effects of climate and land-use change, 3. diversity in human-modified habitats, and 4. responses to disturbance. In agricultural and timber plantations, particularly those using exotic species like pine and eucalyptus, epiphyte diversity is significantly reduced. In contrast, most native tree species and shade-grown agroforestry systems support higher species richness. Traditional polycultures with dense canopy cover maintain up to 88% of epiphyte diversity, while intensive management practices, such as epiphyte removal in coffee and cacao plantations, cause substantial biodiversity losses. Conservation strategies should prioritize preserving old-growth forests, maintaining forest fragments, and minimizing intensive land management. Active restoration, including the translocation of fallen epiphytes and planting vegetation nuclei, is more effective than passive approaches. Future research should include long-term monitoring to understand epiphyte dynamics and assess the broader impacts of epiphyte loss on biodiversity and ecosystem functioning.

Keywords