eLife (Dec 2015)

Genetic mechanisms control the linear scaling between related cortical primary and higher order sensory areas

  • Andreas Zembrzycki,
  • Adam M Stocker,
  • Axel Leingärtner,
  • Setsuko Sahara,
  • Shen-Ju Chou,
  • Valery Kalatsky,
  • Scott R May,
  • Michael P Stryker,
  • Dennis DM O'Leary

DOI
https://doi.org/10.7554/eLife.11416
Journal volume & issue
Vol. 4

Abstract

Read online

In mammals, the neocortical layout consists of few modality-specific primary sensory areas and a multitude of higher order ones. Abnormal layout of cortical areas may disrupt sensory function and behavior. Developmental genetic mechanisms specify primary areas, but mechanisms influencing higher order area properties are unknown. By exploiting gain-of and loss-of function mouse models of the transcription factor Emx2, we have generated bi-directional changes in primary visual cortex size in vivo and have used it as a model to show a novel and prominent function for genetic mechanisms regulating primary visual area size and also proportionally dictating the sizes of surrounding higher order visual areas. This finding redefines the role for intrinsic genetic mechanisms to concomitantly specify and scale primary and related higher order sensory areas in a linear fashion.

Keywords