BioMedical Engineering OnLine (Aug 2019)

Lower limb joint motion and muscle force in treadmill and over-ground exercise

  • Jie Yao,
  • Ning Guo,
  • Yanqiu Xiao,
  • Zhili Li,
  • Yinghui Li,
  • Fang Pu,
  • Yubo Fan

DOI
https://doi.org/10.1186/s12938-019-0708-4
Journal volume & issue
Vol. 18, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Background Treadmill exercise is commonly used as an alternative to over-ground walking or running. Increasing evidence indicated the kinetics of treadmill exercise is different from that of over-ground. Biomechanics of treadmill or over-ground exercises have been investigated in terms of energy consumption, ground reaction force, and surface EMG signals. These indexes cannot accurately characterize the musculoskeletal loading, which directly contributes to tissue injuries. This study aimed to quantify the differences of lower limb joint angles and muscle forces in treadmills and over-ground exercises. 10 healthy volunteers were required to walk at 100 and 120 steps/min and run at 140 and 160 steps/min on treadmill and ground. The joint flexion angles were obtained from the motion capture experiments and were used to calculate the muscle forces with an inverse dynamic method. Results Hip, knee, and ankle joint motions of treadmill and over-ground conditions were similar in walking, yet different in running. Compared with over-ground running, joint motion ranges in treadmill running were smaller. They were also less affected by stride frequency. Maximum Gastrocnemius force was greater in treadmill walking, yet maximum Rectus femoris and Vastus forces were smaller. Maximum Gastrocnemius and Soleus forces were greater in treadmill running. Conclusions Treadmill exercise results in smoother joint kinematics. In terms of muscle force, treadmill exercise requires lower loading on knee extensor, yet higher loading on plantar flexor, especially on Gastrocnemius. The findings and the methodology can provide the basis for rehabilitation therapy customization and sophistic treadmill design.

Keywords