Diagnostics (May 2025)

Automated Lightweight Model for Asthma Detection Using Respiratory and Cough Sound Signals

  • Shuting Xu,
  • Ravinesh C. Deo,
  • Oliver Faust,
  • Prabal D. Barua,
  • Jeffrey Soar,
  • Rajendra Acharya

DOI
https://doi.org/10.3390/diagnostics15091155
Journal volume & issue
Vol. 15, no. 9
p. 1155

Abstract

Read online

Background and objective: Chronic respiratory diseases, such as asthma and COPD, pose significant challenges to human health and global healthcare systems. This pioneering study utilises AI analysis and modelling of cough and respiratory sound signals to classify and differentiate between asthma, COPD, and healthy subjects. The aim is to develop an AI-based diagnostic system capable of accurately distinguishing these conditions, thereby enhancing early detection and clinical management. Our study, therefore, presents the first AI system that leverages dual acoustic signals to enhance the diagnostic ACC of asthma using automated, lightweight deep learning models. Methods: To build an automated, lightweight model for asthma detection, tested separately with respiratory and cough sounds to assess their suitability for detecting asthma and COPD, the proposed AI models integrate the following ML algorithms: RF, SVM, DT, NN, and KNN, with an overall aim to demonstrate the efficacy of the proposed method for future clinical use. Model training and validation were performed using 5-fold cross-validation, wherein the dataset was randomly divided into five folds and the models were trained and tested iteratively to ensure robust performance. We evaluated the model outcomes with several performance metrics: ACC, precision, recall, F1 score, and area under the AUC. Additionally, a majority voting ensemble technique was employed to aggregate the predictions of the various classifiers for improved diagnostic reliability. We applied Gabor time–frequency transformation for feature extraction and NCA) for feature selection to optimise predictive accuracy. Independent comparative experiments were conducted, where cough-sound subsets were used to evaluate asthma detection capabilities, and respiratory-sound subsets were used to evaluate COPD detection capabilities, allowing for targeted model assessment. Results: The proposed ensemble approach, facilitated by a majority voting approach for model efficacy evaluation, achieved acceptable ACC values of 94.05% and 83.31% for differentiating between asthma and normal cases utilising separate respiratory sounds and cough sounds, respectively. The results highlight a substantial benefit in integrating multiple classifier models and sound modalities while demonstrating an unprecedented level of ACC and robustness for future diagnostic predictions of the disease. Conclusions: The present study sets a new benchmark in AI-based detection of respiratory diseases by integrating cough and respiratory sound signals for future diagnostics. The successful implementation of a dual-sound analysis approach promises advancements in the early detection and management of asthma and COPD.We conclude that the proposed model holds strong potential to transform asthma diagnostic practices and support clinicians in their respiratory healthcare practices.

Keywords