Synthesis of BiOI/Mordenite Composites for Photocatalytic Treatment of Organic Pollutants Present in Agro-Industrial Wastewater
Alejandra Gallegos-Alcaíno,
Nathaly Robles-Araya,
Camila Avalos,
Alexander Alfonso-Alvarez,
Carlos A. Rodríguez,
Héctor Valdés,
Norma A. Sánchez-Flores,
Juan C. Durán-Alvarez,
Monserrat Bizarro,
Francisco J. Romero-Salguero,
Adriana C. Mera
Affiliations
Alejandra Gallegos-Alcaíno
Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de La Serena, Benavente 980, La Serena 1700000, Chile
Nathaly Robles-Araya
Departamento de Química, Laboratorio Central de Análisis Químico, Universidad de La Serena, Juan Cisternas 1015, La Serena 1700000, Chile
Camila Avalos
Departamento de Química, Laboratorio Central de Análisis Químico, Universidad de La Serena, Juan Cisternas 1015, La Serena 1700000, Chile
Alexander Alfonso-Alvarez
Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de La Serena, Benavente 980, La Serena 1700000, Chile
Carlos A. Rodríguez
Instituto de Investigación Multidisciplinario en Ciencia y Tecnología, Universidad de La Serena, Raúl Bitrán 1305, La Serena 1700000, Chile
Héctor Valdés
Clean Technologies Laboratory, Engineering Faculty, Universidad Católica de la Santísima Concepción, Concepción 4030000, Chile
Norma A. Sánchez-Flores
Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico
Juan C. Durán-Alvarez
Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico
Monserrat Bizarro
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico
Francisco J. Romero-Salguero
Departamento de Química Orgánica, Instituto Universitario de Investigación en Química Fina y Nanoquímica, Facultad de Ciencias, Universidad de Córdoba, 14071 Córdoba, Spain
Adriana C. Mera
Instituto de Investigación Multidisciplinario en Ciencia y Tecnología, Universidad de La Serena, Raúl Bitrán 1305, La Serena 1700000, Chile
Recently, bismuth oxyiodide (BiOI) is an attractive semiconductor to use in heterogeneous photocatalysis processes. Unfortunately, BiOI individually shows limited photocatalytic efficiency, instability, and a quick recombination of electron/holes. Considering the practical application of this semiconductor, some studies show that synthetic zeolites provide good support for this photocatalyst. This support material permits a better photocatalytic efficiency because it prevents the quick recombination of photogenerated pairs. However, the optimal conditions (time and temperature) to obtain composites (BiOI/ synthetic zeolite) with high photocatalytic efficiency using a coprecipitation-solvothermal growth method have not yet been reported. In this study, a response surface methodology (RSM) based on a central composite design (CCD) was applied to optimize the synthesis conditions of BiOI/mordenite composites. For this purpose, eleven BiOI/mordenite composites were synthesized using a combined coprecipitation-solvothermal method under different time and temperature conditions. The photocatalytic activities of the synthesized composites were evaluated after 20 min of photocatalytic oxidation of caffeic acid, a typical organic pollutant found in agro-industrial wastewater. Moreover, BiOI/mordenite composites with the highest and lowest photocatalytic activity were physically and chemically characterized using nitrogen adsorption isotherms, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and diffuse reflectance spectroscopy (DRS). The optimal synthesis conditions prove to be 187 °C and 9 h. In addition, the changes applied to the experimental conditions led to surface property modifications that influenced the photocatalytic degradation efficiency of the BiOI/mordenite composite toward caffeic acid photodegradation.