Supercapacitors are regarded as reliable energy storage devices to alleviate the energy crisis and environmental pollution. However, the relatively low capacitance and low energy density limit the practical application of supercapacitors. In this context, boron carbon nitride (BCN) nanomaterials have been extensively studied in the past decade due to their chemical and thermal stability, high mechanical strength, as well as tunable bandgap. The specific capacitance and energy density of supercapacitors can be significantly improved by fabricating nanostructured BCN-based electrode materials. In this review, the recent advances in the application of BCN-based materials in supercapacitors is presented. Strategies such as structure design, porosity/defect engineering, and hybrid nanostructure construction to boost the electrochemical performance of BCN-based materials are provided and, finally, promising research directions for novel energy storage materials are proposed.