Polymers (Nov 2021)

Design of Promising Green Cation-Exchange-Membranes-Based Sulfonated PVA and Doped with Nano Sulfated Zirconia for Direct Borohydride Fuel Cells

  • Marwa H. Gouda,
  • Noha A. Elessawy,
  • Sami A. Al-Hussain,
  • Arafat Toghan

DOI
https://doi.org/10.3390/polym13234205
Journal volume & issue
Vol. 13, no. 23
p. 4205

Abstract

Read online

The direct borohydride fuel cell (DBFC) is a low-temperature fuel cell that requires the development of affordable price and efficient proton exchange membranes for commercial purposes. In this context, super-acidic sulfated zirconia (SO4ZrO2) was embedded into a cheap and environmentally friendly binary polymer blend, developed from poly(vinyl alcohol) (PVA) and iota carrageenan (IC). The percentage of SO4ZrO2 ranged between 1 and 7.5 wt.% in the polymeric matrix. The study findings revealed that the composite membranes’ physicochemical features improved by adding increasing amounts of SO4ZrO2. In addition, there was a decrease in the permeability and swelling ratio of the borohydride membranes as the SO4ZrO2 weight% increased. Interestingly, the power density increased to 76 mW cm−2 at 150 mA cm−2, with 7.5 wt.% SO4ZrO2, which is very close to that of Nafion117 (91 mW cm−2). This apparent selectivity, combined with the low cost of the eco-friendly fabricated membranes, points out that DBFC has promising future applications.

Keywords