PLoS ONE (Jan 2024)

Link prediction accuracy on real-world networks under non-uniform missing-edge patterns.

  • Xie He,
  • Amir Ghasemian,
  • Eun Lee,
  • Alice C Schwarze,
  • Aaron Clauset,
  • Peter J Mucha

DOI
https://doi.org/10.1371/journal.pone.0306883
Journal volume & issue
Vol. 19, no. 7
p. e0306883

Abstract

Read online

Real-world network datasets are typically obtained in ways that fail to capture all edges. The patterns of missing data are often non-uniform as they reflect biases and other shortcomings of different data collection methods. Nevertheless, uniform missing data is a common assumption made when no additional information is available about the underlying missing-edge pattern, and link prediction methods are frequently tested against uniformly missing edges. To investigate the impact of different missing-edge patterns on link prediction accuracy, we employ 9 link prediction algorithms from 4 different families to analyze 20 different missing-edge patterns that we categorize into 5 groups. Our comparative simulation study, spanning 250 real-world network datasets from 6 different domains, provides a detailed picture of the significant variations in the performance of different link prediction algorithms in these different settings. With this study, we aim to provide a guide for future researchers to help them select a link prediction algorithm that is well suited to their sampled network data, considering the data collection process and application domain.