Hemijska Industrija (Jan 2011)
Application of lipophilicity parameters in QSRR analysis of newly synthesized s-triazine derivatives: Prediction of the retention behavior
Abstract
Considerable attention has been paid to the analysis of chemicals in the s-triazine group, due to their widespread use in agricultural chemistry and their subsequent impact on biological systems. For initial chemical screening of the activity of newly synthesized compounds, it is recommended to determine their lipophilicity and physico-chemical property in relation to biological activity. Lipophilicity is difficult to quantify. The most widely accepted measure of lipophilicity is the octanol-water partition coefficient. Measurement of the octanol-water partition coefficients is achieved by an alternative method, i.e. reversed-phase liquid chromatography. Reversed-phase thin-layer chromatography (RP TLC) is a rapid method for the analysis of large number of s-triazine type compounds. Certain relationship between the structure of s-triazine compounds and their mobility on silica gel impregnated with paraffin oil have recently been demonstrated. The retention behavior of compounds in various chromatographic systems strongly depends on their physico-chemical properties. Recently, much effort was given in finding adequate mathematical model relating the retention of the given analyte to its physico-chemical and structural parameters (descriptors). These correlations are known as quantitative structure-retention relationships (QSRR), which offer a powerful tool for the prediction of separation behavior. The QSRR equations describing retention constants RM0, determined for different modifiers in mobile phase in terms of logarithms of n-octanol-water partition coefficients, were derived. The partition coefficients (AlogPs, AClogP, AB/logP, milogP, AlogP, MlogP, logPKowin, XlogP2, XlogP3, ACDlogP i ClogP) were calculated by application of different software packages. The goal of this paper was to select the logP data and TLC system that best characterize octanol/water partitioning and thus the lipophilicity of the investigated molecules.
Keywords