BMC Plant Biology (Jan 2022)

QTL mapping for growth-related traits by constructing the first genetic linkage map in Simao pine

  • Dawei Wang,
  • Lin Yang,
  • Chen Shi,
  • Siguang Li,
  • Hongyan Tang,
  • Chengzhong He,
  • Nianhui Cai,
  • Anan Duan,
  • Hede Gong

DOI
https://doi.org/10.1186/s12870-022-03425-y
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background Simao pine is one of the primary economic tree species for resin and timber production in southwest China. The exploitation and utilization of Simao pine are constrained by the relatively lacking of genetic information. Construction a fine genetic linkage map and detecting quantitative trait locis (QTLs) for growth-related traits is a prerequisite section of Simao Pine's molecular breeding program. Results In our study, a high-resolution Simao pine genetic map employed specific locus amplified fragment sequencing (SLAF-seq) technology and based on an F1 pseudo-testcross population has been constructed. There were 11,544 SNPs assigned to 12 linkage groups (LGs), and the total length of the map was 2,062.85 cM with a mean distance of 0.37 cM between markers. According to the phenotypic variation analysis for three consecutive years, a total of seventeen QTLs for four traits were detected. Among 17 QTLs, there were six for plant height (Dh.16.1, Dh16.2, Dh17.1, Dh18.1–3), five for basal diameter (Dbd.17.1–5), four for needle length (Dnl17.1–3, Dnl18.1) and two for needle diameter (Dnd17.1 and Dnd18.1) respectively. These QTLs individually explained phenotypic variance from 11.0–16.3%, and the logarithm of odds (LOD) value ranged from 2.52 to 3.87. Conclusions In our study, a fine genetic map of Simao pine applied the technology of SLAF-seq has been constructed for the first time. Based on the map, a total of 17 QTLs for four growth-related traits were identified. It provides helpful information for genomic studies and marker-assisted selection (MAS) in Simao pine.

Keywords