Journal of Systemics, Cybernetics and Informatics (Aug 2012)
Semiparametric Mixed Effect Model with Application to the Longitudinal Knee Osteoarthritis (OAK) Data
Abstract
Motivated by the study of the longitudinal development and progression of knee osteoarthritis (OA) over a 15-year period, this study developed non-parametric mixed-effect models for ordinal outcomes. A stochastic mixed-effect model was used to evaluate the similarity of trajectories associated with increasing disease severity of OA in both knees. Then, a non-parametric mixed-effects model, based on cubic B-splnes, was developed to characterize the unknown nonlinear trend of logits as a function of time1-order. A Markov Transition Model was developed to characterize the transitions among multi-states of knee OA. This newly developed approach allows more flexible functional dependence of the ordinal outcome, levels of increasing knee OA severity, on the covariates.