Компьютерная оптика (Apr 2019)
Comparison of backward flow values in the sharp focus of light fields with polarization and phase singularity
Abstract
Using Jones matrices and vectors, we show that an optical metasurface composed of a set of subwavelength binary diffraction gratings and characterized by an anisotropic transmittance described by a polarization rotation matrix by the angle mφ, where φ is the polar angle, forms an m-th order azimuthally or radially polarized beam when illuminated by linearly polarized light, generating an optical vortex with the topological charge m upon illumination by circularly polarized light. Such a polarization-phase converter (PPC) performs a spin-orbit transformation, similar to that performed by liquid-crystal q-plates. Using a FDTD method, it is numerically shown that when illuminating the PPC by a uniformly (linearly or circularly) polarized field with topological charge m = 2 and then focusing the output beam with a binary zone plate, a reverse on-axis light flow is formed, being comparable in magnitude with the direct optical flow. Moreover, the reverse flows obtained when focusing the circularly polarized optical vortex with the topological charge m = 2 and the second-order polarization vortex are shown to be the same in magnitude.
Keywords