PLoS Computational Biology (Feb 2011)

Synaptic plasticity and connectivity requirements to produce stimulus-pair specific responses in recurrent networks of spiking neurons.

  • Mark A Bourjaily,
  • Paul Miller

Journal volume & issue
Vol. 7, no. 2
p. e1001091


Read online

Animals must respond selectively to specific combinations of salient environmental stimuli in order to survive in complex environments. A task with these features, biconditional discrimination, requires responses to select pairs of stimuli that are opposite to responses to those stimuli in another combination. We investigate the characteristics of synaptic plasticity and network connectivity needed to produce stimulus-pair neural responses within randomly connected model networks of spiking neurons trained in biconditional discrimination. Using reward-based plasticity for synapses from the random associative network onto a winner-takes-all decision-making network representing perceptual decision-making, we find that reliably correct decision making requires upstream neurons with strong stimulus-pair selectivity. By chance, selective neurons were present in initial networks; appropriate plasticity mechanisms improved task performance by enhancing the initial diversity of responses. We find long-term potentiation of inhibition to be the most beneficial plasticity rule by suppressing weak responses to produce reliably correct decisions across an extensive range of networks.