XYZ Micropositioning System Based on Compliance Mechanisms Fabricated by Additive Manufacturing
Andres Ferrara-Bello,
Pedro Vargas-Chable,
Gerardo Vera-Dimas,
Rafael Vargas-Bernal,
Margarita Tecpoyotl-Torres
Affiliations
Andres Ferrara-Bello
Posgrado en Ingeniería y Ciencias Aplicadas, Centro de Investigación en Ingeniería y Ciencias Aplicadas (IICBA-CIICAp), Universidad Autónoma del Estado de Morelos (UAEM), P. C. 62209 Cuernavaca, Mexico
Pedro Vargas-Chable
Facultad de Ciencias Químicas e Ingenierías (FCQeI), Universidad Autónoma del Estado de Morelos (UAEM), P. C. 62209 Cuernavaca, Mexico
Gerardo Vera-Dimas
Facultad de Ciencias Químicas e Ingenierías (FCQeI), Universidad Autónoma del Estado de Morelos (UAEM), P. C. 62209 Cuernavaca, Mexico
Rafael Vargas-Bernal
Departamento de Ingeniería en Materiales, Instituto Tecnológico Superior de Irapuato (ITESI), P. C. 36821 Irapuato, Mexico
Margarita Tecpoyotl-Torres
Centro de Investigación en Ingeniería y Ciencias Aplicadas (IICBA-CIICAp), Universidad Autónoma del Estado de Morelos (UAEM), P. C. 62209 Cuernavaca, Mexico
This article presents the design and implementation of a micropositioning system actuated by three piezoelectric stacks to control its displacements on XYZ axes. The use of conventional piezoelectric buzzers allows us to reduce fabrication costs. The working or mobile platform is the base for objects that will be manipulated, for example, in automated assembling. The micropositioner can be integrated into a microgripper to generate a complete manipulation system. For micropositioner fabrication, at first, Polylactic Acid (PLA) was chosen as the structural material, but after simulation and some experimental tests performed with a micropositioner made of Acrylonitrile Butadiene Styrene (ABS), it showed larger displacement (approx. 20%) due to its lower stiffness. A third test was performed with a positioner made with Polyethylene Terephthalate Glycol (PETG), obtaining an intermediate performance. The originality of this work resides in the geometrical arrangement based on thermoplastic polymer compliance mechanisms, as well as in the use of additive manufacturing to fabricate it. An experimental setup was developed to carry out experimental tests. ANSYS™ was used for simulation.