Advances in Mechanical Engineering (Jun 2024)

Design method for suspension parameters of high-speed railway vehicles considering uncertainties

  • Joonhyuk Park

DOI
https://doi.org/10.1177/16878132241262683
Journal volume & issue
Vol. 16

Abstract

Read online

A design method for suspension parameters is proposed to ensure the desired performance of a railway vehicle despite uncertainties. The method used in this study consists of two loops: a sub-loop, which uses parameter uncertainties to determine the minimum value of target performance, and a main loop, which optimises suspension parameters such that the minimal performance achieves Pareto optimality. Thus, by selecting a suitable Pareto solution that ensures the minimum performance is equal to or higher than the required performance, the robustness of the designed vehicle against the parameter uncertainties can be achieved. The lowest low-frequency damping ratio in the service speed range was selected as one of the design targets. The other target was the critical speed. Two wheel-rail contact characteristics were applied, considering the worst conditions for each design target. The distribution of the parameter uncertainties that minimised the vehicle performance showed distinct characteristics between the longitudinal and lateral suspension parameters, which provides useful information for the maintenance of railway vehicles. The performance analysis for 100,000 random samples shows that the vehicle performed better than the targets with a high probability despite the parameter uncertainties. Further, the simulation results using multi-body dynamics simulation software validated the viability of the proposed method.