Microbiology Spectrum (Jun 2022)

Functional Analysis of Feedback Inhibition-Insensitive Variants of N-Acetyl Glutamate Kinase Found in Sake Yeast Mutants with Ornithine Overproduction

  • Masataka Ohashi,
  • Shota Isogai,
  • Hiroshi Takagi

DOI
https://doi.org/10.1128/spectrum.00822-22
Journal volume & issue
Vol. 10, no. 3

Abstract

Read online

ABSTRACT In the yeast Saccharomyces cerevisiae, N-acetyl glutamate kinase (NAGK), which catalyzes the phosphorylation of N-acetyl glutamate to form N-acetyl glutamyl-5-phosphate, is one of the rate-limiting enzymes in the ornithine and arginine biosynthetic pathways. NAGK activity is strictly regulated via feedback inhibition by the end product, arginine. We previously reported that the Thr340Ile variant of NAGK was insensitive to arginine feedback inhibition and that the interaction between Lys336 and Thr340 in NAGK may be important for arginine recognition. In the present study, we demonstrated that amino acid changes of Thr340 to Ala, Leu, Arg, Glu, Ile, and Asn removed arginine feedback inhibition, although the Thr340Ser variant was subject to the feedback inhibition. Therefore, these results indicate that the arginine-binding cavity formed via the interaction between the carbonyl group in the main chain of Lys336 and the hydroxyl group in the side chain of the residue at position 340 is critical for arginine recognition of NAGK. In addition, we newly identified two mutations in the ARG5,6 gene encoding the Cys119Tyr or Val267Ala variant of NAGK of sake yeast mutants with intracellular ornithine accumulation. Although it is unlikely that Cys119 and Val267 are directly involved in arginine recognition, we found here that two variants of NAGK were insensitive to arginine feedback inhibition and contributed to high-level production of ornithine. Structural analysis of NAGK suggests that these two amino acid substitutions influence the sensitivity to Arg feedback inhibition through alterations in local conformation around each residue. IMPORTANCE Ornithine has a number of physiological benefits in humans. Thus, an Orn-rich alcoholic beverage is expected to relieve feelings of fatigue after drinking. In the yeast Saccharomyces cerevisiae, N-acetyl glutamate kinase (NAGK) encoded by the ARG5,6 gene catalyzes the second step in ornithine and arginine biosynthesis, and its activity is subjected to feedback inhibition by arginine. Here, we revealed a role of key residues in the formation of the arginine-binding cavity which is critical for arginine recognition of NAGK. In addition, we analyzed novel arginine feedback inhibition-insensitive variants of NAGK in sake yeast mutants with ornithine overproduction and proposed that the amino acid substitutions in the NAGK variants destabilize the arginine-binding cavity, leading to the lower sensitivity to arginine feedback inhibition of NAGK activity. These findings provide new insight into the allosteric regulation of NAGK activity and will help to construct superior industrial yeast strains for high-level production of ornithine.

Keywords