Scientific Reports (Nov 2023)
Identify and validate circadian regulators as potential prognostic markers and immune infiltrates in head and neck squamous cell carcinoma
Abstract
Abstract Head and neck squamous cell carcinoma (HNSCC) is a heterogeneity pathological malignant cancer with leading causes of morbidity and mortality. EGFR inhibitors, immune checkpoint inhibitors have become novel treatments. However, the mechanism still remained uncertain. Several studies have confirmed that the circadian rhythms induce multiple malignancies developing. We utilized multi-omics analysis to demonstrate the crosstalk between circadian clock genes and tumor microenvironment in HNSCC. Firstly, we performed the LASSO Cox regression analysis based on the 16 important clock genes. A 7-gene risk model was successfully established in TCGA and validated in GEO datasets. Next, CIBERSORT and ESTIMATE methods were performed to display the immune landscape of high risk and low risk groups, and the results showed that high abundance of mast cells activated, dendritic cells activated and neutrophils were positively correlated with poor OS. To further identify hub genes, Kaplan Meier plot was applied in all TCGA and GEO datasets and two hub genes (PER2, and PER3) were identified, especially PER3, which was found strongly associated with immune score, PDCD1, CD4 + and CD8 + T cells in HNSCCC. Moreover, to explore the innate mechanism of circadian-induced pathway, we constructed a circadian-related ceRNA regulatory network containing 34 lncRNAs, 3 miRNAs and 4 core circadian genes. In-vitro experiments also verified that Per2 or Per3 could suppressed the proliferation, migration and invasion of HNSC. This study unraveled the association between PER3 and prognosis in patients with HNSC and the innate mechanism remains to be elucidated.