IEEE Access (Jan 2020)
MF-TCPV: A Machine Learning and Fuzzy Comprehensive Evaluation-Based Framework for Traffic Congestion Prediction and Visualization
Abstract
A framework for traffic congestion prediction and visualization based on machine learning and Fuzzy Comprehensive Evaluation named MF-TCPV is proposed in this paper. The framework uses DataX and DataV to implement the integration of multi-source heterogeneous traffic data and the visualization of congestion prediction results. A deep prediction model named LSTM-SPRVM based on deep learning algorithms, machine learning algorithms, and Spark parallelization technology for the prediction of traffic congestion features in the future is proposed. In MF-TCPV, traffic congestion is divided into six levels based on Fuzzy Comprehensive Evaluation and traffic congestion features such as average speed, road occupancy rate, and traffic flow density. MF-TCPV is validated based on the real data of Whitemud Drive in Canada. The experimental results demonstrate that MF-TCPV is capable of predicting the traffic congestion accurately and displaying prediction results visually. LSTM-SPRVM is better than other existing deep learning models in terms of prediction accuracy, and MF-TCPV can intuitively visualize the prediction results of traffic congestion.
Keywords