Sensors (May 2010)

Carbon Nanostructure-Based Field-Effect Transistors for Label-Free Chemical/Biological Sensors

  • PingAn Hu,
  • Jia Zhang,
  • Le Li,
  • Zhenlong Wang,
  • William O’Neill,
  • Pedro Estrela

DOI
https://doi.org/10.3390/s100505133
Journal volume & issue
Vol. 10, no. 5
pp. 5133 – 5159

Abstract

Read online

Over the past decade, electrical detection of chemical and biological species using novel nanostructure-based devices has attracted significant attention for chemical, genomics, biomedical diagnostics, and drug discovery applications. The use of nanostructured devices in chemical/biological sensors in place of conventional sensing technologies has advantages of high sensitivity, low decreased energy consumption and potentially highly miniaturized integration. Owing to their particular structure, excellent electrical properties and high chemical stability, carbon nanotube and graphene based electrical devices have been widely developed for high performance label-free chemical/biological sensors. Here, we review the latest developments of carbon nanostructure-based transistor sensors in ultrasensitive detection of chemical/biological entities, such as poisonous gases, nucleic acids, proteins and cells.

Keywords