Image Processing On Line (Dec 2013)

Chambolle's Projection Algorithm for Total Variation Denoising

  • Joan Duran,
  • Bartomeu Coll,
  • Catalina Sbert

DOI
https://doi.org/10.5201/ipol.2013.61
Journal volume & issue
Vol. 3
pp. 311 – 331

Abstract

Read online

Denoising is the problem of removing the inherent noise from an image. The standard noise model is additive white Gaussian noise, where the observed image f is related to the underlying true image u by the degradation model f=u+n, and n is supposed to be at each pixel independently and identically distributed as a zero-mean Gaussian random variable. Since this is an ill-posed problem, Rudin, Osher and Fatemi introduced the total variation as a regularizing term. It has proved to be quite efficient for regularizing images without smoothing the boundaries of the objects. This paper focuses on the simple description of the theory and on the implementation of Chambolle's projection algorithm for minimizing the total variation of a grayscale image. Furthermore, we adapt the algorithm to the vectorial total variation for color images. The implementation is described in detail and its parameters are analyzed and varied to come up with a reliable implementation.