Applied Sciences (Feb 2024)
GPU Accelerated Processing Method for Feature Point Extraction and Matching in Satellite SAR Images
Abstract
This paper addresses the challenge of extracting feature points and image matching in Synthetic Aperture Radar (SAR) satellite images, particularly focusing on large-scale embedding. The widely used Scale Invariant Transform (SIFT) algorithm, successful in computer vision and optical satellite image matching, faces challenges when applied to satellite SAR images due to the presence of speckle noise, leading to increased matching errors. The SAR–SIFT method is explored and analyzed in-depth, considering the unique characteristics of satellite SAR images. To enhance the efficiency of matching identical feature points in two satellite SAR images, the paper proposes a Graphics Processing Unit (GPU) mapping implementation based on the SAR–SIFT algorithm. The paper introduces a multi-GPU collaborative acceleration strategy for SAR image matching. This strategy addresses the challenge of matching feature points in the region and embedding multiple SAR images in large areas. The goal is to achieve efficient matching processing of multiple SAR images in extensive geographical regions. The proposed multi-GPU collaborative acceleration algorithm is validated through experiments involving feature point extraction and matching using 21 GF-3 SAR images. The results demonstrate the feasibility and efficiency of the algorithm in enhancing the processing speed of matching feature points in large-scale satellite SAR images. Overall, the paper contributes to the advancement of SAR image processing techniques, specifically in feature point extraction and matching in large-scale applications.
Keywords