Journal of High Energy Physics (Apr 2020)
Natural dark matter and light bosons with an alternative left-right symmetry
Abstract
Abstract We perform a consistent analysis of the alternative left-right symmetric model emerging from E 6 grand unification. We include a large set of theoretical and experimental constraints, with a particular emphasis on dark matter observables and collider signals. We show that the exotic neutrino inherent to this class of models, the scotino, is a viable candidate for dark matter satisfying relic density and direct detection constraints. This has strong implications on the scotino mass restricting it to lie in a narrow window, as well as on the spectrum of Higgs bosons, rendering it predictable, with a few light scalar, pseudoscalar and charged states. Moreover, we also show that the extra charged W′ gauge boson can be light, and investigate the most promising signals at the future high-luminosity upgrade of the LHC. Our findings show that the most optimistic cosmologically-favoured scenarios should be observable at 5σ, whilst others could leave visible hints provided the background is under good control at the systematical level.
Keywords