E3S Web of Conferences (Jan 2019)

Human-Oriented Design of an Indoor Thermal Environment

  • Ukai Masanari,
  • Nobe Tatsuo

DOI
https://doi.org/10.1051/e3sconf/201911102001
Journal volume & issue
Vol. 111
p. 02001

Abstract

Read online

In this study, an initial survey of clothing insulation and changes in the metabolic rate of individuals in office spaces was performed to establish the distribution of room temperatures at which individuals perceived a neutral thermal sensation. Subsequently, the indoor thermal environment in four offices was surveyed during the summer with different air-conditioning systems to determine the thermal environment stability in each case. The results revealed that for the required temperature, there was a noticeable difference between the average and most frequent values. Moreover, it was determined that the required temperature distribution is not normal, but rather, it is skewed to the low-temperature side. In addition, the radiant air-conditioning system was found to generate a narrow distribution of the equivalent temperature and hence, facilitated a more uniform thermal environment compared to a convective (multi-unit) air-conditioning system. Therefore, in buildings with convective air-conditioning systems, even if the planar average thermal environment is categorized as comfortable, it may be possible that workers who are sensitive to the cold or heat will complain of discomfort more frequently than those in buildings with radiant air-conditioning systems because the probability of workers sitting in cold- or hot-spot areas is higher in the former case.