Remote Sensing (Sep 2023)

Performance Evaluation of China’s First Ocean Dynamic Environment Satellite Constellation

  • Dan Qin,
  • Yongjun Jia,
  • Mingsen Lin,
  • Shanwei Liu

DOI
https://doi.org/10.3390/rs15194780
Journal volume & issue
Vol. 15, no. 19
p. 4780

Abstract

Read online

China’s first dynamic environment satellite constellation includes the HY-2B, HY-2C, and HY-2D satellites. In this study, the along track SLA, SWH, and SSWS of this satellite constellation were evaluated. SLA parameters are evaluated using self-crossing and dual-crossing methods. The SSWS and SWH data were evaluated by comparing with NDBC buoy and other available satellites’ data. The evaluation revealed that the standard deviation of the SLA from the HY-2B/C/D satellites’ single mission crossovers was 3.29 cm, 3.51 cm, and 3.72 cm, respectively. In addition, at the dual-crossovers of the Jason-3 satellite and the HY-2B satellite, the HY-2B satellite, and the HY-2C/D satellites, the standard deviation was determined to be 3.40 cm, 3.48 cm, and 4.25 cm, respectively. The accuracy of the SWH products of the HY-2B/C/D satellite radar altimeters was observed to be 0.23 m, 0.25 m, and 0.26 m, respectively. The accuracy of the SSWS data of the HY-2B/C/D satellite radar altimeters was observed to be 1.48 m/s, 1.59 m/s, and 1.35 m/s, respectively. In addition, this study also analyzed and compared the observation efficiency of the dynamic environment satellite constellation with the following six satellites: Sentinel-3(A, B), Jason-3, Sentinel-6A, Saral, and Cryosat-2. Observation efficiency refers to selection of any point on the globe to find a minimum radius of at least one observation point within a circle in a 14-day period. The analysis results demonstrated that observation efficiency of China’s first dynamic environment satellite constellation was comparable to that of the six satellites.

Keywords