Sensors (Nov 2023)

AMFF-Net: An Effective 3D Object Detector Based on Attention and Multi-Scale Feature Fusion

  • Guangping Li,
  • Zuanfang Mo,
  • Bingo Wing-Kuen Ling

DOI
https://doi.org/10.3390/s23239319
Journal volume & issue
Vol. 23, no. 23
p. 9319

Abstract

Read online

With the advent of autonomous vehicle applications, the importance of LiDAR point cloud 3D object detection cannot be overstated. Recent studies have demonstrated that methods for aggregating features from voxels can accurately and efficiently detect objects in large, complex 3D detection scenes. Nevertheless, most of these methods do not filter background points well and have inferior detection performance for small objects. To ameliorate this issue, this paper proposes an Attention-based and Multiscale Feature Fusion Network (AMFF-Net), which utilizes a Dual-Attention Voxel Feature Extractor (DA-VFE) and a Multi-scale Feature Fusion (MFF) Module to improve the precision and efficiency of 3D object detection. The DA-VFE considers pointwise and channelwise attention and integrates them into the Voxel Feature Extractor (VFE) to enhance key point cloud information in voxels and refine more-representative voxel features. The MFF Module consists of self-calibrated convolutions, a residual structure, and a coordinate attention mechanism, which acts as a 2D Backbone to expand the receptive domain and capture more contextual information, thus better capturing small object locations, enhancing the feature-extraction capability of the network and reducing the computational overhead. We performed evaluations of the proposed model on the nuScenes dataset with a large number of driving scenarios. The experimental results showed that the AMFF-Net achieved 62.8% in the mAP, which significantly boosted the performance of small object detection compared to the baseline network and significantly reduced the computational overhead, while the inference speed remained essentially the same. AMFF-Net also achieved advanced performance on the KITTI dataset.

Keywords