Waste (May 2023)

Conversion of Waste Synthesis Gas to Desalination Catalyst at Ambient Temperatures

  • David D. J. Antia

DOI
https://doi.org/10.3390/waste1020026
Journal volume & issue
Vol. 1, no. 2
pp. 426 – 454

Abstract

Read online

In this study, a continuous flow of a synthetic, dry, and acidic waste synthesis gas (WSG) (containing N2, H2, CO, CH4, and CO2) at ambient temperatures was first passed through a fixed bed reactor (FBR) containing halite + m-Fe0 and then a saline bubble column diffusion reactor (BCDR) containing m-Fe0. The FBR converted 47.5% of the CO + CH4 + CO2 into n-C0. Passage of the n-C0 into the BCDR resulted in the formation of the desalination catalyst (Fe0:Fe(a,b,c)@C0) + CH4 + CO + CO2 + CxHy, where 64% of the feed n-C0 was converted to gaseous products. The desalination pellets can remove >60% of the water salinity without producing a reject brine or requiring an external energy source. The gaseous products from the BCDR included: CxHy (where x 2, and H2.

Keywords