Scientific Reports (Jun 2024)
MRGPRX2-mediated mast cell activation by substance P from overloaded human tenocytes induces inflammatory and degenerative responses in tendons
Abstract
Abstract Mast cells are immune cells minimally present in normal tendon tissue. The increased abundance of mast cells in tendinopathy biopsies and at the sites of tendon injury suggests an unexplored role of this cell population in overuse tendon injuries. Mast cells are particularly present in tendon biopsies from patients with more chronic symptom duration and a history of intensive mechanical loading. This study, therefore, examined the cross talk between mast cells and human tendon cells in either static or mechanically active conditions in order to explore the potential mechanistic roles of mast cells in overuse tendon injuries. A coculture of isolated human tenocytes and mast cells (HMC-1) combined with Flexcell Tension System for cyclic stretching of tenocytes was used. Additionally, human tenocytes were exposed to agonists and antagonists of substance P (SP) receptors. Mast cell degranulation was assessed by measuring β-hexosaminidase activity. Transwell and cell adhesion assays were used to evaluate mast cell migration and binding to tendon extracellular matrix components (collagen and fibronectin), respectively. Gene expressions were analyzed using real time qRT-PCR. Our results indicate that mechanical stimulation of human tenocytes leads to release of SP which, in turn, activates mast cells through the Mas-related G-protein-coupled receptor X2 (MRGPRX2). The degranulation and migration of mast cells in response to MRGPRX2 activation subsequently cause human tenocytes to increase their expression of inflammatory factors, matrix proteins and matrix metalloproteinase enzymes. These observations may be important in understanding the mechanisms by which tendons become tendinopathic in response to repetitive mechanical stimulation.